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Self-diffusion in simple liquids 

Karl-Erik Larsson 
Royal Institute of Technology. S-100 44 Stockholm, Sweden 

Received 5 October 1993 

Abstract. Using the combined results of extensive MD simulation and neutron scattering studies 
of liquid lead at 623 and 1170 K, details of the self-diffusion process within the atomic domain 
are studied. From analysis of F&. t) it is found that there is an element of structural relaxation 
in the self-diffusion process which may lead to a jump diffusion component. Also from the 
derivation of memoly functions rs(Q, I), particularly for the velocity autocorrelation rs(t), it is 
found that the MD resulu are not well described by present mode-coupling theories. It is believed 
lhat a more sophisticated theory which does not separate the characteristic parts of r,(t) and 
takes many-body effects into account mom properly is needed to explain the observations. 

1. Introduction 

The development of the self-diffusion process in space and time may be divided in two 
regions: firstly the asymptotic long-time region may be described as a universnl stochastic 
Markovian process with no memory effects and secondly the atomic domain in which the 
process is non-Markovian with pronounced memory effects specific to the kind of diffusing 
atomic system. The extension in space and time of the atomic domain is determined by 
the van Hove correlation function G(r. t )  = Gs(r,  t )  + G&, t ) .  In simple liquids it is a 
question of ILL30 8, in r-space and of 10-20 ps in time. 

Under the assumption of the small change in velocity of the self-particle compared with 
the rapid change in force correlation, the Langevin form of the spreading out of the particle 
is valid: 

Here m is the particle mass, f the dynamic friction coefficient and T the temperature. 
This form has the merit of giving correcting limiting - behaviour for t -+ 0, namely 
xz = (kBT/m)rZ = .itz, and, for I + CO, namely x 2  = 2D(r - to), where D = k e T / f  and 

In the atomic domain the friction coefficient as well as other transport coefficients must 
be considered to be space and time dependent because the velocity and force correlations 
decay on similar time scales. The atoms are under a continuous force influence. The 
empirical study of this region is performed by slow neutrun scattering (NS) and molecular 
dynamics (MD) simulation. Of particular interest is the study of the scattering function 
S,(Q. o) (NS) or the intermediate scattering function F s ( Q ,  t )  (MD), both resulting from 
Fourier transforms of G&, 1) .  These functions describe the physics of the self-diffusion 
process. 

0953-8984/94/152835+l2$19.50 0 1994 IOP Publishing Ltd 2835 

- 

ta = m / f .  
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Of particular interest for theoretical kinetic descriptions of the self-diffusion process is 
also the velocity autocorrelation function @(t) = (ux(0)ux(t))  because the memory function 
rs(t) of @(t) was the basic aim of such theories. In general, two coupled integrodifferential 
equations describe the interdependence between Fa(Q, t )  and the time- and space-dependent 
diffusion coefficient D(Q, I )  and its memory function r , (Q,  1):  

at = - ~ r ' ( Q , f ' ) D ( Q . r - ~ ' ) d r '  

For Q = 0 the latter of these relations simplifies to 

(3) 

In the present report a detailed analysis of Fs(Q, t )  over two decades of decay as well as 
of r&) are discussed. The empirical background consist of an accurate and extensive NS- 
calibrated MD simulation of liquid lead at 623 and 1170 K. The simulation was performed 
on a system of 16384 particles [1,2]. The accuracy of data permits F,(Q. t )  to be used 
down to a value of 0.01. Memory functions for other liquids, namely argon, rubidium and 
sodium, are also considered for comparison. 

2. Detailed study of Fr(Q, t ) ;  structural relaxation 

The principle adopted in this work is to compare Fs(Q, t )  with the corresponding Langevin 
expression 

FL(Q, f )  = exp(?Q2) (4) 

with f from equation (1). The aim is to isolate the collective effects existing in the atomic 
domain from the stochastic Markovian non-collective effects. 

In figures ](a) and (b) ,  Fs(Q,  I )  from MD for lead at 623 K and 1170 K, respectively, 
is compared with the Langevin diffusion case FL(Q, t ) ,  The important observation is that 
Fs(Q, t )  oscillates around FL(Q, I )  in a characteristic way for short and intermediate times. 
These oscillations are not visible below about 1.5 A-' in the figure because of the long 
time scales, but they are there for shorter times in the same sense as visible about 1.5 A-'. 
For the smaller Q-values with its long time scales it is seen that Fs(Q. t )  coalesces with 
FL(Q, t )  in a way typical for the stochastic Markovian process. For the very small times, 
&(e, t )  coincides with FL(Q, 1)  which then is described by the ideal-gas form. This 
is best illustrated for the largest Q-values of about 7.5 A-'.  However, only for times 
1 < 0.5 x lo-" s are the MD data described by the ideal-gas type of free motion: 

( 5 )  1 2  2 2  FdQ, I -+ 0)  = F L ( Q , ~ )  = exp(-poQ f ). 
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It is to be expected that the oscillations of t )  around FL(Q, t )  contain all the 
information about the specific atomic dynamics in liquid lead for short and intermediate 
times. We shall therefore focus our interest on this region. 

Because the decay rate of Fs(Q. t )  is strongly dependent on Q,  it is suitable to introduce 
a scaling of the time variable. We introduce r = DQ’t. The time 7 is now measured in 
the dimensionless variable f/ro, where ro = 1/DQ2. In NS, l / D Q z  is equivalent to the 
neutron observation time. DQ2 is also the hydrodynamic limit for the width function of 
S,(Q, 0). The result is that all the &(e,  curves now range out to about 7 5 5-6 for the 
present range o f t  and Q.  

In order to emphasize the details of Fs(Q,  5 )  compared with the Langevin curve of 
FL(Q, 7). the difference A F s ( Q ,  r )  is found: 

A F J Q ,  = FdQ. r )  - FL(Q, r ) .  (6) 

The absolute value of this difference still varies over a wide range because Fs(Q,  t )  decays 
from 1 to 0.01 in the region investigated. A second scaling, performed by dividing 
AF,(Q, r )  by &(e, r ) ,  removes this difficulty. A new function C,(Q, 7 )  is thus obtained 
131: 

which will oscillate around zero. This is so because, at small and long times, C,(Q, 7) + 0 
since then F,(Q, 7 )  + 

All the derived MD values for 80 different 8-values are given in a three-dimensional 
plot in figures 2(n) and 2(&) for 623 K and for 1170 K, respectively. The dominant feature 
is a resonance in C,(Q, r )  in the neighbourhood of Q = Qo = 2.25 A-’ for lead. Qo is 
the value of Q at the main peak of the static structure factor S(Q). We also see regions in 
Q, r-space where C,(Q. 7) is negative. 

In order to understand the physical meaning of these features we consider two constant- 
r cuts through the family of curves in figure 2. We select r = 0.5 and r = 2.5. These 
curves are given in figure 3 as a function of Q.  Using the relation t = 7 / D Q 2  the unscaled 
time t is also given in connection to each curve. It is found that the minima of the curves 
occur at 0.25 ps for 623 K and 0.20 ps for 1170 K. These are close to the times at which the 
first minimum of @ ( I )  occurs. Also, at these times the steeply falling part of r,(t) reaches 
its minimum value and goes over into the long-time tail (compare figures 5 and later 7); the 
memory of basic ‘solid-like’ behaviour-probably of strongly damped collective nature- 
within the cage of nearest neighbours is to a large degree lost in this short time. F,(Q, t )  
decays more rapidly than FL(Q, t )  because of the rapid loss of memory and therefore 
C,(Q, 7 )  becomes negative. Between 0.25 and about 1.5 ps at 623 K and between 0.20 and 
about 0.5 ps at 1170 K, Fs(Q. I) decays more slowly than FL(Q, t ) .  At 1-2 ps for 623 K 
and at 0.3-0.6 ps for 1170 K, Fs(Q,  t )  intersects FL(Q. t ) .  A comparison with the shape 
of r,(f) shows that within these respective time intervals we find the long-time tails of 
these memory functions. This is the time region where recollision effects make themselves 
felt which theoretically were treated as mode-coupling phenomena. If these are described 
as coupling of the self-motion to various microscopic currents and density fluctuations-as 
is done in present MC theories-we may call this region the ‘collective fluid’ region on 
the atomic scale. The reason that Fs(Q,  t )  decays more slowly than FL(Q,  t )  is that these 

r ) .  
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Figure 1. Examples of forms of FdQ. f) for 'liquid lead' at (a) 623 K and (b) I170 K in the 
small-Q region Q C 0.5 A-' and for large Q-values Q 2 1.5 A-', . . . . . .. MD data: --. 
Langevin diffusion; -- . ., gas model. 

collective phenomena with a mean lifetime of some picoseconds hindered the decay of the 
self-correlation. 

One would perhaps expect that, from this point on, C,(Q, 7 )  should remain at zero, 
but the new and remarkable feature is that instead of remaining at zero-meaning that 

t) should be described as a random stochastic process-a peak appears in C,(Q, T) 
at Q near Qo. For longer times, C,(Q, T) decays towards zero as expected. The peak 



Self-difision in simple liquids 2839 

lo" 

0 02 0.4 0.6 0.0 1 

t(P4 

1 on 

h *: 
a 
q lo-' 

lo" 

0 1 2 3 4 5  

tb4 

0.00 0.05 0.10 0.15 0.20 0.25 

t(P.9 
Figure 1. (Continued) 

in CS(Q,? )  indicates coupling of the self-diffusion process to the structure of the liquid 
and is an effect of a collective nature. It is remarkable that this feature also exists at the 
higher temperature. The peaks occur at times t, of about 4.8 ps for 623 K and 1.6 ps at 
1170 K. The self-diffusion coefficients at the two temperatures are 1.8 x lo-' cm2 ps-' 
and 5.4 x cmz ps-', respectively. The product Dt, of t, and D is approximately 
constant between the two widely different temperatures. If tm is interpreted as an average 
lifetime of the cage or, better, the lifetime of the set of spherical shells round any self-atom, 
the observed constancy of Dt, is qualitatively understood; the shorter the lifetime of the 
caging system, the higher is the value of the self-diffusion coefficient. i, may be considered 
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Figure 2. Three-dimensional plol of the Function C,(Q. r ) :  ( a )  623 K: (b) 1170 K, 

as the sbuctural relaxation time. It is natural that this lifetime effect is best observed for 
Q-values near Qo; 2 r j Q 0  is the right wavelength to probe the basic periodic structure in 
g ( r )  manifested in the main peak of the static structure factor S ( Q ) .  

The physics behind the structural relaxation are illustrated by the time evolution of 
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Figure 3. Constant-r cuts through C,(Q, r j  for r = 0.5 and 2.5 at ( a )  623 K and (bj I170 K. 
In addition to the Q-scale the real time t is given. 

G(r, t )  for liquid lead at 623 K (figure 4). G(r, t )  = G&, t )  + Gd(r, I ) ,  where Gs(r, t )  is 
the self-part and Gd(r. t )  is the distinct or pair correlation part. It is seen that the Structure 
of G&. f )  is smeared out almost completely at longer times and that Gs(r,  ?)-the central 
peak-and G&-, t )  will overlap in an increasing range of r-values as time goes on [4]. 
Perhaps it is then possible for the self-atom to jump over the 'barrier' of ever-decreasing 
height. Lf 6Dtm is interpreted as the mean square I'" of a jump length, the observed numbers 
give P Y 5.2 A'. this corresponds to the reasonable jump length of about 2.3 A. At 
still longer times the neighbouring atoms are almost randomly distributed and therefore the 
self-atom becomes increasingly freer to diffuse away; the Langevin diffusion is approached. 

3. Comparison with mode-coupling predictions 

By use of equations (2) and (3). D ( Q ,  t )  and r8(Q, t )  were calculated from F,(Q,  tf [ 5 ] .  
The results are given in a three-dimensional plot in [5]. Of particular interest are the results 
for Q = 0 in which case r,(t) is directly determined by use of the velocity autocorrelation 
function @(t)  (equation (3')). The result for this case is given in figure 5(a). In this figure 
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r [ A I  
Figure 4. Time evolution of the van Hove correlation function for liquid lead af 623 K for 
different constat times: -, t = 0.2 ps; . - --, t = 0.4 ps; - . -, t = 1.0 ps; 0,t = 1.5 ps; 
x, I = 2.0 ps. 

is also given the best possible fit to the derived r,(t) for lead at 623 K of a formula derived 
by Levesque and Verlet (Lv) [6]  from MD simulations on a Lennard-Jones system: 

r,(t) = A exp(-a2r2) + B t 4  exp(-br2). (8) 

This formula cannot describe the memory function of @ ( I )  for lead. To produce a better 
but still not satisfactory fit the addition of a third term is necessary: 

r,(t) = Aexp(-a2t2) + Bt4exp(-bt2) - CtY exp(-czr2). (9) 

Such a prescription with y = 14 provides a good description of the dip at 0.25 ps as is also 
seen in figure 5(n). 

The modecoupling theory for rs(r) proposed by Sjogren and Sjolander (ss) [7] is 
basically founded on the Lv formula. If this fails, there is good reason to believe that the ss 
theory will fail. This is indeed the case, as seen in figure 5(b). The long-time tail including 
the mode-coupling terms exceeds the MD result by a factor of 2. Also, as expected, the 
theory does not describe correctly the dip between the steeply falling ‘phonon’ part and the 
tail; the theory is indeed tailored not to do so. 

On the other hand the SS theory describes rather well the long-time tail of both the argon 
and the rubidium data according to Sjogren [SI. The reason for the difference between the 
mode-coupling results could be the totally different effective pair potentials governing the 
atomic motions (figure 6). In the case of lead, the neighbouring atoms are under a continuous 
force action whereas in argon and rubidium there is an approximately force-free region at 
the nearest-neighbour distance. The assumption of the theory that atoms move in a free 
gas-like fashion between binary collisions may have some approximate reality for argon 
and rubidium but not for lead. The steeply falling part of the memory function--called the 
binary collision part in the SS theory-is only very approximately given by an ansatz. In 
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reality the time evolution of this part of r,(t) must be determined by the atomic motions of 
a complicated many-body system consisting of a central atom and its cage of neighbouring 
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first peak of g ( r )  in the corresponding liquid. 

atoms. 
Also the mode-coupling terms in the ss theory are based upon a similar assumption; the 

density fluctuation correlations in F ( Q ,  f), longitudinal current correlations in Cl(Q, t )  and 
the transverse current correlations in C,(Q, t )  are coupled to a term Fs(Q.  t )  - Fo(Q, I), 
where Fo(Q,  t )  describes the free atomic motion. This construction indeed for small times 
gives a leading mode-coupling term starting as & Q * u $ ~ r 4 ,  where U: = k a T / m  and QO is 
the Einstein frequency. The mode-coupling term thus is forced to start as f 4  to agree with 
the LV formula. 

A critical examination of the shape of the memory functions of argon, rubidium and 
sodium [9] and lead obtained from MD data for Q(t)  for these liquids shows that the Lv form 
(equation (8)) only approximately describes the gross features of r&) (figure 7). There are 
systematic deviations from the smooth Lv form, and in particular, the dip between the two 
components is not well described by this form for any cnse. In argon this deviation goes in 
one direction, and in liquid metals in the opposite direction, lead being the extreme case. 

It is an interesting fact that the oscillatory features in the long-time tail repeat themselves 
for all four liquids. The effective pair potentials are, however, radically different for these 
liquids, as illustrated in figure 6. One may speculate that these oscillations are the result 
of recollisions caused by back reactions from atoms in neighbouring shells. (Compare 
the overlap of G&, f )  with G&, t )  as times proceeds (figure 4).) Are such oscillations 
signalling memory effects from the dying structure? In fact for liquid lead at 623 K the 
remnants of periodicity in Cl(Q,t)  creating the maximum i n  C,(Q,o) at o Y 9 meV 
([2] (figures 6-8) corresponds approximately to the periodicity of about 0.45 ps in the 
oscillations of r,(f)  (time distance from t = 0 to the first peak at f = 0.45 ps. Also the 
longitudinal phonon dispersion relations in the solid state for all three metals have maxima 
at frequencies corresponding to the observed periodicity in rs(f). In any case the form 
predicted by present MC ideas does not fit the observations; either one has to manipulate the 
widths of the binary part to obtain a fit which was the case for liquid argon and rubidium 
[8] or one finds a distinct discrepancy in the recollision part as for liquid lead in  the present 
study. Stronger coupling to the 'phonon'-like modes of motion are necessary. These may 
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Figure7. Memory function r,(t) of the velocity autocorrelation function ( u x ( 0 ) v x ( r ) )  from MD 
daIa for the four different liquids, (a )  liquid argon at 85 K, ( b )  liquid lead at 623 K, (c) liquid 
rubidium at 315 K and (d)  liquid sodium at 370 K 0. MD data: -, LV form; . . . , . ., Gaussian 
pm; - . -, tail. The inset in each case gives the tail of r,(t) on an enlarged scale. The best 
fit of the LV form is also given. 

result in the occurrence of strongly damped oscillations before the jump to another position 
is performed by the self-atom when the hindering Gd(r. t )  has decayed sufficiently. It is 
possible that the so-called 'binary collision' part of r,(r) should not be separated from 
the oscillations in the 'recollision' part as is done in the present theoretical approximation. 
These oscillations should be caused by coupling of F ( Q ,  t )  to Fs(Q, f ) ,  but in the SS theory 
the basic first peak ('binary collision') is separated out 

4. Conclusions 

The two basic results of this report are as follows. 

structural relaxations, indicating the possibility of a jump component in the process. 
(1) The self-diffusion process is strongly structure related and contains an element of 
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(2) The structure of the memory function of the velocity autocorrelation function may 
indicate a strong interdependence between the ‘binary’ and ‘recollision’ parts of r s ( T ) .  the 
oscillatory shape of r&) may signal the importance of treating the true many-body problem 
more properly than hitherto has been done. 
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